
I’m a PhD fellow at the Section of Health Data Science and AI at the University of Copenhagen. I am also affiliated with Statistics Denmark and the Department of Infectious Disease at Imperial College London.
My work lies at the intersection of data science and public health. My research interests involve tackling (hard) biological/healthcare problems with machine learning as well as developing robust, reproducible, and open software.
Before coming to Copenhagen, I was an engineering intern at Logitech at the AI department and I got my MSc at EPFL (Computational Neurociences).
* indicates co-first author.
Deep learning from videography as a tool for measuring E. coli infection in poultry
Neil Scheidwasser*, Louise Ladefoged Poulsen*, Prince Ravi Leow, Mark P. Khurana, Maider Iglesias-Carrasco, Daniel Joseph Laydon, Christl Ann Donnelly, Anders Miki Bojesen, Samir Bhatt, David A. Duchêne
Royal Society Open Science
phylo2vec: a library for vector-based phylogenetic tree manipulation
Neil Scheidwasser*, Ayush Nag*, Matthew J. Penn, Anthony Jakob, Frederik Mølkjær Andersen, Mark Poulsen Khurana, Landung Setiawan, David A. Duchêne, Samir Bhatt
Journal of Open Science Software
Exploring the potential and limitations of deep learning and explainable AI for longitudinal life course analysis
Helen Coupland, Neil Scheidwasser, Alexandros Katsiferis, Megan Davies, Seth Flaxman, Naja Hulvej Rod, Swapnil Mishra, Samir Bhatt & H. Juliette T. Unwin
BMC Public Health
Artificial intelligence for modelling infectious disease epidemics
Moritz U. G. Kraemer, Joseph L.-H. Tsui, Serina Y. Chang, Spyros Lytras, Mark P. Khurana, Samantha Vanderslott, Sumali Bajaj, Neil Scheidwasser, Jacob Liam Curran-Sebastian, Elizaveta Semenova, Mengyan Zhang, H. Juliette T. Unwin, Oliver J. Watson, Cathal Mills, Abhishek Dasgupta, Luca Ferretti, Samuel V. Scarpino, Etien Koua, Oliver Morgan, Houriiyah Tegally, Ulrich Paquet, Loukas Moutsianas, Christophe Fraser, Neil M. Ferguson, …, & Samir Bhatt
Nature
High-resolution epidemiological landscape from ~290,000 SARS-CoV-2 genomes from Denmark
Mark P. Khurana*, Jacob Curran-Sebastian*, Neil Scheidwasser*, Christian Morgenstern, Morten Rasmussen, Jannik Fonager, Marc Stegger, Man-Hung Eric Tang, Jonas L. Juul, Leandro Andrés Escobar-Herrera, Frederik Trier Møller, The Danish COVID-19 Genome Consortium (DCGC), Mads Albertsen, Moritz U. G. Kraemer, Louis du Plessis, Pikka Jokelainen, Sune Lehmann, Tyra G. Krause, Henrik Ullum, David A. Duchêne, Laust H. Mortensen & Samir Bhatt
Nature Communications
Phylo2Vec: a vector representation for binary trees
Matthew J Penn*, Neil Scheidwasser*, Mark P Khurana, David A Duchêne, Christl A Donnelly, Samir Bhatt
Systematic Biology
Bayesian inference of phylogenetic distances: revisiting the eigenvalue approach
Matthew J. Penn, Neil Scheidwasser, Christl A. Donnelly, David A. Duchêne & Samir Bhatt
Bulletin of Mathematical Biology
The limits of the constant-rate birth–death prior for phylogenetic tree topology inference
Mark P Khurana, Neil Scheidwasser, Matthew J Penn, Samir Bhatt, David A Duchêne
Systematic Biology
Leaping through Tree Space: Continuous Phylogenetic Inference for Rooted and Unrooted Trees
Matthew J Penn*, Neil Scheidwasser*, Joseph Penn, Christl A Donnelly, David A Duchêne, Samir Bhatt
Genome Biology and Evolution
Speaker Embeddings as Individuality Proxy for Voice Stress Detection
Zihan Wu, Neil Scheidwasser, Karl El Hajal, Milos Cernak
Interspeech
Efficient speech quality assessment using self-supervised framewise embeddings
Karl El Hajal, Zihan Wu, Neil Scheidwasser, Gasser Elbanna, Milos Cernak
ICASSP
Byol-s: Learning self-supervised speech representations by bootstrapping
Gasser Elbanna, Neil Scheidwasser, Mikolaj Kegler, Pierre Beckmann, Karl El Hajal, Milos Cernak
HEAR: Holistic Evaluation of Audio Representations (NeurIPS 2021 Competition)
SERAB: A multi-lingual benchmark for speech emotion recognition
Neil Scheidwasser, Mikolaj Kegler, Pierre Beckmann, Milos Cernak
ICASSP
Hybrid handcrafted and learnable audio representation for analysis of speech under cognitive and physical load
Gasser Elbanna, Alice Biryukov, Neil Scheidwasser, Lara Orlandic, Pablo Mainar, Mikolaj Kegler, Pierre Beckmann, Milos Cernak
Interspeech
Commentary: The Risky Closed Economy: A Holistic, Longitudinal Approach to Studying Fear and Anxiety in Rodents
Neil Scheidwasser, Melissa Faggella, Elizaveta Kozlova, Carmen Sandi
Frontiers in Behavioral Neuroscience
Complex models, marginal benefits–a multi-centre development and validation study of early warning scores across 2·16 million patient admissions addressing intercurrent medical interventions
Alexandros Katsiferis, Neil Scheidwasser, Tri-Long Nguyen, Theis Lange, Mark P Khurana, Pernille B Nielsen, Kasper Karmark Iversen, Christian S Meyhoff, Eske Kvanner Aasvang, Jesper Mølgaard, Adrian G Zucco, Tibor V Varga, Samir Bhatt
Estimating the worst-case scenario for malaria parasite rate in sub-Saharan Africa
Kaustubh Chakradeo, Alexandros Katsiferis, Neil Scheidwasser, Iwona Hawryluk, Katherine E Battle, Swapnil Mishra, David L Smith, Seth Flaxman, David Duchene, Samir Bhatt
Large-scale genomic surveillance reveals immunosuppression drives mutation dynamics in persistent SARS-CoV-2 infections
Mark P. Khurana, Alexandros Katsiferis, Neil Scheidwasser, Mathilde Marie Brünnich Sloth, Jacob Curran-Sebastian, Christian Morgenstern, Man-Hung Eric Tang, Jannik Fonager, Morten Rasmussen, Marc Stegger, Charles Whittaker, The Danish COVID-19 Genome Consortium (DCGC), Sune Lehmann, Laust H. Mortensen, Pikka Jokelainen, Moritz U G Kraemer, Neil M Ferguson, Mahan Ghafari, Tyra G. Krause, David A. Duchêne, Samir Bhatt
Generalised Bayesian distance-based phylogenetics for the genomics era
Matthew J. Penn, Neil Scheidwasser, Mark P. Khurana, Christl A. Donnelly, David A. Duchêne, Samir Bhatt